Hermitian matrices and graphs: singular values and discrepancy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian matrices and graphs: singular values and discrepancy

Let A = (aij) n i,j=1 be a Hermitian matrix of size n ≥ 2, and set

متن کامل

Graphs and Hermitian matrices: discrepancy and singular values

We show that the second singular value σ2 (A) of A satisfies σ2 (A) ≤ C1disc (A) log n, for some absolute constant C1, and this is best possible up to a multiplicative constant. Moreover, we construct infinitely many dense regular graphs G such that σ2 (A (G)) ≥ C2disc (A (G)) log |G| where C2 > 0 is an absolute constant and A (G) is the adjacency matrix of G. In particular, these graphs dispro...

متن کامل

Relating multiway discrepancy and singular values of nonnegative rectangular matrices

The minimum k-way discrepancy mdk(C) of a rectangular matrix C of nonnegative entries is the minimum of the maxima of the withinand between-cluster discrepancies that can be obtained by simultaneous k-clusterings (proper partitions) of its rows and columns. In Theorem 2, irrespective of the size of C, we give the following estimate for the kth largest nontrivial singular value of the normalized...

متن کامل

Using discrepancy to control singular values for nonnegative matrices

We will consider two parameters which can be associated with a nonnegative matrix: the second largest singular value of the “normalized” matrix, and the discrepancy of the entries (which is a measurement between the sum of the actual entries in blocks versus the expected sum). Our main result is to show that these are related in that discrepancy can be bounded by the second largest singular val...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2004

ISSN: 0012-365X

DOI: 10.1016/j.disc.2004.05.006